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Abstract

Structure formation in spinor Bose-Einstein condensate are systems of significant interest: they have both

superfluid and magnetic order, lending themselves interesting dynamical textures after a quench.

Following previous theoretical work on quenches from finite to zero magnetic field, we explore the

consequences of quenching to a variety of different final magnetic field strengths in this dissertation. Our

studies begin with developing an algorithm to propagate this complex, multi-modal system using an

adaptive-step Runge-Kutta-based partial differential equation solver. We use this to evolve trajectories

that approximately describe the full quantum field dynamics using the Truncated Wigner formalism. In

our results we observe a quenched spinor condensate reorganize itself for various different quench depths,

observing experimentally-known phenomenon such as spontaneous magnetization, coarsening in long-time

dynamics, and domain formation. We also observe never-before seen behavior, including the

light-cone-esque propagation of correlations in the shallow quench regime, and a gradual spontaneous

ordering of the mean correlation.
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Abbreviation Definition

BEC Bose-Einstein Condensate

GPE Gross-Pitaevskii Equation

PGPE Projected Gross-Pitaevskii Equation

SMA Single Mode Approximation

SO(3) Special Orthogonal Group of all 3D rotations

SU(2) Special Unitary Group (spin space)

U(1) Unitary Group

VKRF45 Vectorized Runge-Kutta-Felhberg to 4th and 5th order
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Chapter 1

Introduction

A lecturer in second year once told our class that the goal of physics was to predict the future.

This is child’s play for linear, well-behaved systems away from the deathly touch of chaos, but for most

systems — especially those transitioning between phases — this is not so trivial. Symmetry breaking

phase transitions are a fundamental physical process that appears in scenarios ranging from superfluid

helium[1] to the early dynamics of the universe[2]. In this thesis we look at the equilibriation dynamics of

spinor Bose-Einstein condensates (BECs).

First theorized by S. N. Bose in 1924[3] and experimentally realized in 1995[4], Bose-Einstein conden-

sation is a highly coherent state of matter that provides us with an extremely unique opportunity. BECs

have highly tunable interactions that we can control using Feshbach resonances[5]. In addition, they equi-

libriate slowly — spinor condensates slower still[6]. These systems give us a unique chance to perform a

quantum quench and actually watch the system reorganize itself.

When we “quench” a system, we change its parameters on a timescale much shorter than its healing

time — much like a blacksmith dipping a hot sword into cold water. In a quantum spinor system it’s a

magnetic field, instead of temperature, that we dial back. This translates to exponentially growing excita-

tions that manifest themselves as magnetic domains. This structure comes about from the spontaneously

broken symmetry by quantum fluctuations during a quench through a multicritical point; a phase transi-

tion.

Previous work on quenched spinor condensates[7] has found that some dynamics are reasonably well

described by a linearized theory (which we introduce in the next chapter). In 2011, in an investigation

into thermalization dynamics, Barnett et al. concluded that the quenched system does not thermalize at

all[8]. Instead it reaches a quasisteady (“prethermalized”) phase, with domains that grow randomly over

time. Interestingly enough, such prethermalized regimes also turn up in atomic superfluids[9].

In this work we explore the results seen by Barnett et al. for a two-dimensional spin-1 condensate. Sim-

ulation code is developed from the ground up, tested by reproducing experimentally known phenomena,

and finally used to investigate quenching dynamics. We make use of the spinor Gross-Pitaevskii equations,

and Bogoliubov theory to analytically explore instabilities around a quench.

Our goals for this research are to a) develop working code that accurately simulates an interacting spin-

1 Bose system; b) reproduce the results of Barnett et al.’s 2011 paper; c) investigate the effect on domain

formation of different quench depths; and d) determine the boundaries of different quench regimes, if any.

In chapter 2, we outline the background theory needed to begin our investigation. Included is an

overview of the different ground state phases and spin dynamics in a spinor condensate, so that we may

develop an initial intuition for these highly quantum systems. Chapter 3 discusses the numerical essentials

of our project — how we developed our code and the tests to justify it. Finally, chapter 4 goes through

the simulation results.





Chapter 2

Preliminaries

Quantum systems are notorious for being counterintuitive; strange and hostile. In this chapter

we go through some fundamental concepts of Bose-Einstein condensation, moving onto spinor condensates

and the mean-field theory so often used to describe them. After building some rapport with our system,

we discuss Bogoliubov theory; its formalism, excitation spectra, and we derive the spinor Gross-Pitaevskii

equations along the way. We then move on to learn about all the interesting dynamics a spinor BEC has

to offer — its different phases, spin-mixing, and, of course, quenching dynamics.

2.1 The Spinor Condensate

Bose-Einstein condensation is an impressive demonstration of the peculiar

concept of wave-particle duality, where at low energies particles become

waves are start superimposing on its neighbors. It’s characterized by a

macroscopic occupation of the lowest energy mode, where all atoms col-

lapse to the same quantum state. Cooling a Bose gas past a critical temper-

ature (often only a few hundred nanokelvin above absolute zero) initiates

this phase transition. A pure Bose-Einstein condensate at T = 0 can be

thought of as a gas of atoms undergoing an identity crisis — every single

atom, remarkably, has the same wavefunction:

ϕ0 = |ϕ0|eiθ, (2.1)

This acts as an order parameter, and dictates most properties of the system.

Scalar condensates are said to have U (1) gauge symmetry; i.e., it has a free

“choice” of phase θ in Eq. (2.1) without affecting any physical properties of

the state.

2.1.1 Spin Degrees of Freedom

(a)

(b)
+1

+1

-1

-1

0

0

E

Figure 2.1: Hyperfine energy
levels of the F = 1 atom (a)

with the Zeeman effect, where
an external magnetic field

shifts the energy levels. In (b)

the field is turned off, and all
three hyperfine states become
degenerate.

Atoms making up our Bose gas typically have a number of spin states. At

low magnetic fields, these states become accessible, allowing the condensate

to have spin degrees of freedom. This condensate is known as a spinor

BEC.

At low magnetic fields, the Zeeman effect fades (See Fig. 2.1) and the

hyperfine interaction between the spin states of an atom dominates. In-

stead of there being one lowest ground state, a three-way degeneracy is
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born — the condensate can now “choose” a spin state. In a spin system,

the symmetry can be broken in many ways; leading to more flavorful in-

teractions such as spin currents[10], dipolar gases[11], and spontaneous

magnetization[12]. Now we have something new — instead of a scalar or-

der parameter, our condensate is now described by a complex vector order

parameter:

Ψ0 =
√
n0

ψ+

ψ0

ψ−

 (2.2)

where n0 is the number density and ψm are the +1, 0,−1 components1. 1 In this thesis we consider

only spin-1 atoms.
A non-zero spin gives the atom a small magnetic moment — our system

can now display novel phenomena such as magnetization textures. Taking

the spin-1 vector, f = (fx, fy, fz)
T with components:

fx =
~√
2

0 1 0

1 0 1

0 1 0

 , fy =
~√
2

0 −i 0

i 0 −i
0 i 0

 , fz = ~

1 0 0

0 0 0

0 0 −1


(which are simply rotation matrices in spin (SU (2)) space), we can com-

pute expressions for longitudinal (pointing out of the plane),

Fz = Ψ†0fzΨ0

= n0
(
|ψ+|2 − |ψ−|2

) (2.3)

and transverse (pointing around inside the plane) magnetizations

Figure 2.2: Interesting
new magnetization effects
include the formation of spin

(skyrmion) vortices.

Fx = Ψ†0fxΨ0

=
n0√

2

(
ψ†+ψ0 + ψ†0ψ− + ψ+ψ

†
0 + ψ0ψ

†
−

) (2.4)

Fy = Ψ†0fyΨ0

=
n0√

2

(
ψ†+ψ0 + ψ†0ψ− − ψ+ψ

†
0 − ψ0ψ

†
−

) (2.5)

where Fx and Fy are sometimes given in terms of F+ and F−:

F+ =Fx + iFy (2.6a)

F− =Fx − iFy (2.6b)

With these we construct the spin-density vector, F = (Fx, Fy, Fz)
T.

Unsurprisingly, spinor condensates are highly susceptible to magnetic

fields, allowing the experimentalist to create new ground-state phases by

varying an external magnetic field (see Sec. 2.1.4).

2.1.2 The Spinor Hamiltonian

Our system’s Hamiltonian is given by[13]:

H = H0 +Hint (2.7)

where

H0 =

∫
drΨ†

(
− ~2

2m
∇2 + Vext(r) + qf2z

)
Ψ , and (2.8)

Hint =

∫
dr

1

2
gnn

2
0 +

1

2
gs〈f〉2 (2.9)
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The first term (2.8) is known as the free Hamiltonian, where Vext(r) is

the external trapping potential and q ∼ B2 is the quadratic Zeeman shift.

In the interaction Hamiltonian (2.9), 〈f〉 ≡ ψ∗afabψb . Note that there is an implied

summation over the repeated

indicies a and b. They are
summed over the three spin

states; −1, 0 and 1.

Amazingly, all particle and spin interactions are expressed with just

two parameters; gn and gs, respectively. This is thanks to the low energy

of atoms in the condensate which allow us to approximate the interaction

potentials by simple contact interactions:

lim
k→0

V (r) = gδ(r) (2.10)

The particle and spin interaction parameters can thus be given in just

the terms of the s-wave scattering lengths:

gn =
4π~2

3m
(a0 + 2a2), and gs =

4π~2

3m
(a2 − a0) (2.11)

where a0 and a2 are the scattering lengths for the particle and spin interac-

tions, respectively.

In a spinor BEC, the two interaction parameters have the following

physical meanings:

gn > 0 repulsive density interaction

gn < 0 attractive particle-particle interaction (unstable)

gs > 0 antiferromagnetic spin interactions

gs < 0 ferromagnetic spin interactions

Figure 2.3: Ferromagnetic

and antiferromagnetic order-
ings (the vertical axis is the z

axis).

Note that in any case we will need to have a positive gn for our con-

densate to be mechanically stable, else the entire system collapses. An

antiferromagnetic system means that it favors minimizing the 〈f〉2 in (2.9),

while a ferromagnetic system wants to maximize 〈f〉2.

For this thesis we focus on the spin dynamics of 87Rb, which has a re-

pulsive particle-particle interaction and a ferromagnetic spin interaction, so

that excluding the influence of an external magnetic field, the system likes

to locally magnetize.

2.1.3 Gross-Pitaevskii Equations

From Hamiltonian given in Eq. (2.7), and dropping the zero subscripts on

our order parameter, one can obtain the energy functional for the system:

E(Ψ∗,Ψ) =

∫ [
~2

2m
|∇Ψ|2 + Vext(r)|Ψ|2 +

1

2
gn|Ψ|4 +

1

2
gs|Ψ∗fΨ|2

]
dr

(2.12)

which we will minimize to determine the spinor ground states. Such ground

states satisfy the so-called time-independent Gross-Pitaevskii equations:

µψm =
∂

∂ψ∗m
E(Ψ∗,Ψ) , m = +1, 0,−1 (2.13)

where µ = gnn0 is the chemical potential. This describes the system at its

steady equilibrium. More generally, the spinor condensate evolves dynami-

cally according to:2 2 This comes from the Heisen-
berg equation of motion for
a diagonalized Hamiltonian

using Bogoliubov transfor-
mations. A full derivation of
these equations can be found

in Ref.[14]

i~
∂ψm
∂t

=
∂

∂ψ∗m
E(Ψ∗,Ψ) , m = +1, 0,−1 (2.14)
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Explicitly writing out each component of Eq. (2.14), we get the three

coupled spinor Gross-Pitaevskii equations:

i~
∂ψ+

∂t
=

[
− ~2

2m
∇2 − p+ q + gn|Ψ|2 + gs(|ψ+|2 + |ψ0|2 − |ψ−|2)

]
ψ+ + gsψ

∗
−ψ

2
0

(2.15a)

i~
∂ψ0

∂t
=

[
− ~2

2m
∇2 + gn|Ψ|2 + gs(|ψ+|2 + |ψ−|2)

]
ψ0 + 2gsψ+ψ

∗
0ψ−

(2.15b)

i~
∂ψ−
∂t

=

[
− ~2

2m
∇2 + p+ q + gn|Ψ|2 + gs(|ψ−|2 + |ψ0|2 − |ψ+|2)

]
ψ− + gsψ

∗
+ψ

2
0

(2.15c)

By solving the steady-state equations (2.13), we can look at the ground-

state phases and excitation spectra. The dynamical GPEs (2.15) will be

used to propagate a simulated system in time.

2.1.4 Phases of a Spin-1 Condensate

Seminal studies by Stenger et al.[15] showed clear spin phases depending

on the variation of an external magnetic field, given by the linear (p) and

quadratic (q) Zeeman parameters.

The ground state wavefunction is found by minimizing the energy func-

tional in Eq. (2.12) in the Thomas-Fermi approximation, where kinetic

energy terms are neglected. Looking at the ferromagnetic case for 87Rb

(Fig. 2.4(c)), we find that the linear Zeeman field corresponds to the overall

magnetization of our condensate, lifting or lowering the spinors out of the

plane, giving preference to the m = ±1 states, and hence a non-zero Fz.

This gives the ferromagnetic phases for q ≤ 0 and p 6= 0, located to the

left of the red lines in Fig. 2.4.

p

q

p

q

p

q

(a) gs > 0

(b) gs = 0

(c) gs < 0

Figure 2.4: Phase diagrams
for (a) gs > 0, (b) gs = 0,

and (c) gs < 0. The blue and

gray shaded regions indicate
antiferromagnetic and broken-

axis phases, respectively.
m = -1m = +1

m = 0

m = -1

m = -1m = 0m = +1m = -1m = 0m = +1

m = +1

0

p

m = +1

m = 0

m = 0

m = -1

0

q

m = +1

m = 0

m = -1

q0

Figure 2.5: The effect of
linear and quadratic Zeemans

on the F = 1 hyperfine levels.
The quadratic Zeeman effect is more subtle; it favors the m = 0 state for

q > 0, and the m = ±1 states for q < 0. For high q values, this translates

into a polar (Ψ = (0, 1, 0)T) ground state.

In the shaded region of Fig. 2.6, between p = q and p2 = q2 − q× 2|gs|n0,

there exists the so-called broken axis phase, where spinors with non-zero

Fx and Fy components are lifted out of the plane. In this region one may

picture a tug-of-war between the quadratic Zeeman (which prefers the

m = 0 state) and the interaction energies (which favor the m = ±1 states)3. 3 This tug-of-war is what

causes spin mixing dynamics,
which we will talk about in

the next section.
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Ferromagnetic

Ferromagnetic

Polar

Broken axis

Broken axis

p

q .
2|gs|n. 

Figure 2.6: Schematic dia-
gram for the different phases

for the ferromagnetic case,

such as 87Rb.

Additionally, we note that the broken-axis region has a second order phase

boundary — the transition is gradual and the phase domains miscible.

Note that the |0〉 → | + 1〉 or | − 1〉 population exchange shown in

the bottom-right-hand corner of Fig. 2.5 is a symmetry-breaking process

and thus the transition from the polar to broken-axis phase is a symmetry-

breaking phase transition.

2.1.5 Spontaneous Symmetry Breaking

In a spinor Bose-Einstein condensate, there exists both gauge symmetry

(free choice of phase), and spin symmetry (free choice of spin state). The

ground states are degenerate and lie symmetrically around our system —

there is no one single favored state.

Figure 2.7: Goldstone’s Mexi-
can hat potential, exhibiting

U (1) gauge symmetry. At the
peak the system symmetric,

but once it falls to a stable
low-energy state it breaks

said symmetry.

Below a critical temperature, the atoms Bose condense into a single

state. To us, the outside observers, the system appears to have arbitrarily

“chosen” a single state out of many equally favorable ones. In the act of

equilibriating to this new phase of matter, the system has spontaneously

broken the symmetry.

Symmetry breaking is the physicist’s version of a hurricane after the

proverbial butterfly flaps its wings. When a system crosses a critical point,

it is the small quantum fluctuations that determine which branch of a

bifurcation is taken, and hence the system’s ultimate fate.

Symmetries of a system also relate closely to conservation laws4. Here 4 If the reader is interested,
one may want to look up

the Ward-Takahashi identity;
or, for a classical (and more

accessible) analog, check out
Noether’s theorem.

the U (1) symmetry corresponds to a conservation of particle number, while

the SU (2) corresponds to a conservation of total magnetization.

When a system spontaneously breaks a continuous symmetry, Nambu-

Goldstone modes necessarily appear[16, 17]. These are long-wavelength,

spinless excitations, generated for each broken symmetry that does not

preserve the ground state[18].

Here is a nice segway for us to discuss the Bogoliubov excitation spec-

trum, which is a special case of Nambu-Goldstone modes for weakly-

interacting Bose gases.
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2.2 Bogoliubov Theory

In the mean-field theory, one argues that in the dilute, low-energy limit

of T ≈ 0, we can effectively ignore quantum and thermal fluctuations

and replace the field operator (which describes our condensate) with its

expectation value5: 5 One must be careful about

doing this, as it breaks U (1)

symmetry and hence number
conservation. As long as we

fulfill orthonormality and

completeness conditions in
our expansion of the field

operator, we should be fine.

Ψ̂ = 〈Ψ̂〉 ≡ Ψ0 , 〈Ψ̂†Ψ̂〉 = |Ψ0|2 = n0 (2.16)

Here, we assume equilibrium, and Ψ is the three-component, spinor order

parameter as described in the previous section. This is all good and well

for simplifying calculations, but not very interesting if we want to consider

at least some fluctuations.

Bogoliubov theory is a perturbative theory[19] that expands small quan-

tum fluctuations around the mean-field ground state Ψ0 up to quadratic

order. We now consider the fluctuations of the field operator:

Ψ̂ = Ψ0 + δΨ̂ (2.17)

where the fluctuation term satisfies 〈δΨ̂〉 = 0. This is known as the Bogoli-

ubov ansatz.

2.2.1 The Uniform Condensate

In this thesis we consider a uniform condensate (Vext = 0) in a box of

volume L3, which is an infinite uniform condensate with periodic boundary

conditions at the edges of the box. These boundary conditions give us a

plane-wave expansion of the field operator:

ψ̂m =
1√
L3

∑
k

âk,me
ik·r , m = +1, 0,−1 (2.18)

where m labels the spin component, and k are harmonic wave vectors of

the box:

k =
2π

L
(i, j, k) i,j,k, integers (2.19)

2.2.2 Excitations

Keeping in mind that we’ll be looking at non-equilibrium dynamics later,

we’ll need to look at the excitation spectrum first to determine what we

expect to see, and where the instabilities should be.

In considering the excitation spectra, we take the second-order Hamilto-

nian and diagonalize it by utilizing the Bogoliubov approximation (where

we replace zero-momentum operators with the particle number6) 6 This is valid in the low-

temperature case as the
condensate is very close to

being in a coherent state,
where the annihilation
operator acting on a state is

the same as that state being
multiplied by some constant

number.

â0 →
√
N0

â†0,mâ0,m′ → N0ψ
†
mψm′

â†0,m1
â†0,m2

â0,m′2 â0,m′1 → N0(N0 − 1)ψ†m1
ψ†m2

ψm′2ψm′1

(2.20)

and the Bogoliubov transformation[20]

âk,m =
∑
m′

(uk,mm′ b̂k,m′ + v−k,mm′ b̂
†
−k,m′) (2.21)
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Here, b̂ and b̂† are the quasiparticle operators that destroy and create ex-

citations (a “quasiparticle”), respectively. N0 is the condensate particle

number, and m denote the spin components.

Our quenching studies will look at quenching from at p = 0, q ∼ large

polar phase, so we will look at the Bogoliubov dispersion spectra around

the polar state. This leads to the Hamiltonians:

H(0) =

εk − p+ q + gsn 0 0

0 εk + gnn 0

0 0 εk + p+ q + gsn

 (2.22)

H(2) =

 0 0 gsn

0 gnn 0

gsn 0 0

 (2.23)

where n = N0/L
3 is the number density and εk = ~2k2/(2m) the kinetic

energy.
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Bogoliubov Dispersion Figure 2.8: The Bogoliubov
dispersion spectrum. Note
that at low k values, the

dispersion is linear and
behaves like a phonon. At
higher k it reaches the free-

particle regime.

Solving the Bogoliubov-de Gennes equation[21] for the above matrices

gives us the spectrum with three branches. The density (m = 0) branch

gives famous scalar Bogoliubov dispersion (plotted in Fig. 2.8):

Ek,0 =
√
εk(εk + 2gnn) (2.24)

which is phonon-like at low k; i.e., Ek, 0 ≈ ck, where c is the density speed

of sound. This branch is the Nambu-Goldstone mode associated with U (1)

symmetry breaking. This is accompanied by two other spin branches:

Ek,±1 =
√

(εk + q)(εk + q + 2gsn)∓ p (2.25)

arising from population transfers between the m = 0 and m = ±1 states.

Taking p = 0 and 0 ≤ q ≤ 4|gs|n, we plot the real and imaginary compo-

nents of the dispersion spectrum:
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Figure 2.9: Real and imag-

inary components of the
Bogoliubov dispersion rela-
tion for spin mixing modes,

where the z axis is Ek

It is important to note here that the rise of non-zero imaginary values

point to exponentially growing unstable states within the system[7] — the

system becomes unstable here. If one would recall the form of a stationary

state:

|ϕ(t)〉 = e−iEϕt/~|ϕ(0)〉

that evolves with a phase Eϕt/~ given by the dispersion spectrum for some

k. When this energy becomes imaginary, the argument of the exponen-

tial function becomes real and hence an instability is formed — the mode

|ϕ(0)〉 grows, or decays, exponentially with time.

Thus, taking a polar state into the region where Im(Ek) 6= 0 (that

is, q < 2|gs|n, as in Fig. 2.9), we are essentially pulling the ground out

from underneath our system. This can be done by suddenly quenching the

magnetic field to a smaller quadratic Zeeman. The polar state now sits

atop the peak of an instability, and must fall into its new ground state.

This instability is what we will be investigating later on.

2.2.3 Healing Lengths

Recall the Bogoliubov dispersion relation for the U (1) symmetry-broken

mode in Fig. 2.8. For slow momenta; i.e., ~k � mc =
√
mgnn, we enter

a phonon dispersion regime, and quantum fluctuations dominate the exci-

tations. However, for large momenta, the dispersion reaches a free-particle

form:

Ek =
~2k2

2m
+ gnn

where particle-particle interactions dominate.

The transition between the two regimes occurs when the density interac-

tions are comparable to its kinetic energy. This happens at ~2k2/2m = gnn,

and gives as a nice characteristic length over which the condensate re-

sponds to density perturbations. Taking k = 1/ξn, we define the conden-

sate healing length as

ξn =

√
~2

2mgnn
(2.26)

This is the length scale at which we can perturb our condensate and still

have it ‘heal’ back to its original value.
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Similarly, we can define a spin healing length, which is the length scale

over which spin dependent interactions equate to kinetic energy.

ξs =

√
~2

2m|gs|n
(2.27)

When simulating spin dynamics, we must ensure that our condensate is

much larger than the spin healing length if we are to resolve those dynam-

ics7. 7 In saying that, if we limit
our condensate so it’s smaller
than its spin healing length,

we observe population trans-
fers between the m = 0 and

m = ±1 states that oscillate

back and forth, as we’ll see in
the next section.

2.3 Spin Dynamics

2.3.1 Quasi-2D Condensates

Notice that in the previous section the spinor GPEs (2.15) were derived

for the three-dimensional case, while we are working with two-dimensional

condensates.

In experiment, we can create a quasi-2D condensate by upping the axial

trapping frequency so that the condensate is squeezed in the z direction

into a pancake shape. When the length of the condensate in the z direction

is smaller than the spin and particle healing lengths, all interactions are

effectively frozen in that direction, and we can treat the gas as a purely 2D

condensate.

Figure 2.10: A quasi-2D

condensate and its relative
trapping frequencies.

Given the dynamics along the z axis remains frozen, we can separate out

the z component of the wavefunction

Ψ(3D)(x, y, z, t) = Ψ(2D)(x, y, t)χ(z)

where χ(z) is the harmonic oscillator ground state in the z direction.

Plugging this form of the wavefunction back into the spinor GPEs, it’s a

simple exercise to show that the z dependence can be integrated out except

for the interaction terms. Due to the axial direction being assumed weak

compared to the z confinement, the condensate is simply in the harmonic

oscillator ground state in that direction. Continuing with our integration

exercise we find that the effective two-dimensional interaction parameter is

given by

g(2D) =
g(3D)

√
2πlz

, (2.28)

where lz is the harmonic oscillator length in the z direction, given by

lz =

√
~

mωz
(2.29)

From now on we will omit the (2D) superscript and work exclusively

with the 2D interaction parameter.

2.3.2 Non-equilibrium Spin Mixing

For a tightly confined BEC where the size of the condensate is smaller than

the spin healing length, it is energetically costly for spatial spin textures to

form. Thus, all components tend to share the same spatial wavefunction.
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Thus we can break the order parameter up into spatially dependent (but

spin independent) term, multiplied by a simple three-component spinor

γ(t):

Ψ = Φ(r)γ(t) (2.30)

where

γ(t) =


√
ρ+e

iθ+

√
ρ0e

iθ0

√
ρ−e

iθ−

 (2.31)

This is known as the single-mode approximation (SMA), and considerably

simplifies the spinor GPEs. Under the constraint of number and magne-

tization conservation, there are just two dynamical variables[22]: ρ0, the

fractional population of the m = 0 component, and relative phase difference

θ(t) ≡ θ+ + θ− − 2θ0. θ can be thought of as a control for the degree of

magnetization.

Under the SMA, the spin-dependent energy functional is given by[23]:

Es = gsnρ0[(1− ρ0) +
√

(1− ρ0)2 −M2 cos θ] + q(1− ρ0) (2.32)

from which we can obtain the equations of motion for coherent dynamics:

ρ̇0 = −2

~
∂Es
∂θ
∼ const.× sin θ (2.33)

θ̇ =
2

~
∂Es
∂ρ0

∼ const.× cos θ (2.34)

m = 0 m = 0

m = +1 m = -1

Figure 2.11: Schematic of
spin mixing process.

A condensate that is smaller than the spin healing length, when al-

lowed to evolve freely, displays coherent spin oscillations[24] in two distinct

regimes along the quadratic Zeeman parameter, q. For clarity we take

p = 0 and thus M = 0.
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Figure 2.12: matlab simu-
lation of spin oscillations at

varying quadratic Zeeman.
Note the resonance region
around q = |gs|n. Simulation

parameters given in Chapter
4.

Along the quadratic Zeeman is a tug-of-war between the relative ener-

gies associated with the quadratic Zeeman shift and the spin-dependent

interaction. In the interaction regime (q � |gs|n), the gs term in equation

2.32 dominates and interaction energies pull down the m = ±1 states. Here,
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interaction-driven spin mixing prevails. In the Zeeman regime (q � |gS |n),

the q(1 − ρ0) term dominates, the quadratic Zeeman effect lifts the energy

of the m = 0 state and the amplitude of spin oscillations dampen at a rate

of 1/q[25].

In between the two extremes is where the spin interaction and quadratic

Zeeman energies balance. Here the condensate reaches a “spin-mixing

resonance”[26].

When SMA doesn’t apply (ξs < L), the density and spin degrees of

freedom are spatially activated. So when this is the case, what happens

when we quench through this multicritical point?

2.3.3 Quenched Condensates

Classical systems quenched across a symmetry-breaking phase transitions

have been well studied in the context of phase transitions in the early

universe[2] and in low-temperature superfluids[1]. With the rise of exper-

imentally viable T ≈ 0 condensates, this treatment was naturally extended

to a purely quantum phase transition (where we only consider quantum

fluctuations and ignore thermal effects).

30 microns

 36    66    96  126  156  186  246 

Figure 2.13: Sadler et al.’s
in situ images of a quenched
spinor condensate. Colored

domains show the transverse
(in-plane) magnetization,
while the numbers above
indicate time after quench in

milliseconds. Source: [27]

Recall how in Sec. 2.2.2 we found a region of instabilities for a spinor

condensate in the polar (Ψ0 = (0, 1, 0)T) state below q = q0 = 2|gs|n. This

can be seen even more explicitly using Eq. (2.32) from the previous section:

when we lower the quadratic Zeeman into the interaction regime, Eq. (2.32)

displays an energy maxima — this is the dynamically unstable hilltop on

which the current polar state sits, waiting to be pushed off by even the

smallest of fluctuations. This dynamical instability was first noticed when,

during numerical simulations of spin-mixing dynamics, Pu et al.[28] saw

an unusually high sensitivity to noise. Ergo we can think of instabilities as

amplifiers for infinitesimal quantum fluctuations.

We consider the influential Berkeley experiment[27], where Sadler et

al. experimentally quench a spinor condensate through the multicritical

point discussed previously, and, through the magic of in situ magnetization

imaging, watched the growth of unstable modes manifest themselves in the

form of spin domains.

On the effects of quench depth

In the Berkeley experiments the initial condensate starts well into the

Zeeman regime (qi > q0). Short time dynamics show an exponential growth

in transverse magnetization with time constant[29]

τ =
~√

2mgsn
(2.35)

Figure 2.14: Measurements

of growth in transverse
magnetization over time.

Source: [27]

Theoretical work by Lamacraft[7] showed the spectrum of unstable

modes for deep quenches (qf ≈ 0) is

−E2
k = εk(q0 − εk) (2.36)

which is maximized by k =
√
q0. This points to the growth of spin textures

on the scale of ∼ √q0.

For shallow quenches (qf ≈ q0), the unstable mode spectrum is given by:
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−E2
k = c2s(k

2
c − k) (2.37)

It has been predicted that the condensate exhibits a peculiar ‘light cone’

growth in magnetization, akin to spin instabilities found in relativistic

physics[30]. Here, cs ≡ q − q0/2 is the speed of sound for magnons (spin

excitations), and ks ≡ −q(q − q0)/c2s. ks is known as the Compton wave

vector in scattering theory, and is equivalent to the wave vector of a photon

whose energy is the same as the rest mass of the particle.

The border between the two extremities occurs at precisely q = q0/2.

Correlation Functions

Though we can see qualitatively what happens after a quench through

q0, we need a quantitative way to measure the spin textures that appear —

exactly how strongly magnetized are these domains? How large?

We hence turn our attention to correlation functions. In the most gen-

eral sense, correlation functions are a measure of order. For example, if one

wanted to know how ordered the spinors were in a condensate, one might

look at a single spinor at position r. One then looks at all its neighbours

at r + dr and how similar they are — how much they correlate with the

original spinor. Then one looks at a ring of spinors slightly further away, at

r + 2dr. And then at r + 3dr, and r + 4dr, and so on, until all spinors have

been compared to the original.

If we go through this process for every single point and average the

results, we’ve just constructed the spatial correlation function.

G(r)

r

(a) (b) (c) (d)

Figure 2.15: A qualitative
overview of spatial correlation
functions and how they

indicate domain size and
magnetization. (a) and (b)

are closer to the polar phase,

while (c) and (d) are strongly
magnetized. However, in
(a) and (c) the spinors are

randomly oriented (indicated
by the near-zero width of

the central peak), while (b)
and (d) have formed domains
(indicated by the less noisy,

sinc-like structure of the
correlation function).

Formally, the spatial correlation function for transverse magnetization is

given by

G⊥(r) =
1

n2
Re

[∫
drF−(0)F+(r)

]
(2.38)

and the longitudinal correlation function

Gz(r) =
1

n2

∫
drFz(0)Fz(r) (2.39)

When we compute these values, it is much easier to utilize Fourier trans-

forms:

G⊥(r) =
1

n2
Re
[
F−1 (F(F+))× (F(F−)))

]
(2.40)

where F is the 2D Fourier transform, and F± are given by Eq. (2.6).
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Furthermore, we can look at the temporal dependence of spatial correla-

tions — how much does our condensate change in time? Using Bogoliubov

theory, these can be calculated for a qf = 0 quench[8]:

G⊥(t) =
1√

8πq0t/~
1

nξ2s
eq0t/~ (2.41)

Gz(t) =
1

82πq20t
2/~2

1

(nξ2s )2
e2q0t/~ (2.42)

Plotting (2.41) and (2.42), we observe an exponential growth of magnetiza-

tion following the quench, before reaching a plateau (See Fig. 2.16).

This begs the question: are we seeing the system thermalize?

2.3.4 The Prospect of Thermalization

Figure 2.16: Plot of equations
(2.41) and (2.42).

Though the thermalization properties of a system is of fundamental im-

portance, relaxation dynamics in quantum systems still remains elusive.

The question becomes even more complex in systems that cannot take easy

routes to thermal equilibrium due to conservation constraints. Though we

have quantum ergodic theory to tell us the requirements for a system to

thermalize[31], the time scales at which this should happen is still ambigu-

ous.

It was 2011 when Barnett et al.[8] conducted an investigation into long-

time dynamics of the quenched spinor condensate. Due to the curve seen

in Fig. 2.16, thermalization was first assumed, and theory for long-time

behavior developed. Comparing this to their simulations, they found an

irreconcilable difference: the decay of the spatial correlation function dis-

agreed with their theory assuming thermalization. Hence it was concluded

that the system instead reached a prethermalized state.

Prethermalization is an intriguing phenomenon characterized by an ini-

tial, quick establishment of some quasi-steady state. Thermal equilibrium,

if it existed at all, occurs much later.

2.4 Summary

In this chapter we have covered the fundamental concepts of spinor conden-

sates; its intrinsic properties, interactions, and phases. We introduced the

spinor Gross-Pitaevskii equations, which will be used later on to simulate

a spinor condensate. A light treatment of Bogoliubov theory was charted,

with a focus on the dispersion relations of the polar phase. Along the way

we touched on important concepts and quantities of our system: quasi-2D

condensates, the particle and spin healing lengths, and spontaneous sym-

metry breaking. In spin dyanmics we learned about coherent spin-mixing

and spin oscillations; the Zeeman and interaction regimes along q, and

investigations into quench dynamics and thermalization.

2.4.1 Topic of this Thesis

In this thesis we focus exclusively on quenching ferromagnetic 87Rubidium

through the multicritical point q0 = 2|gs|n, keeping p = 0. We begin by
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developing MATLAB code to efficiently and accurately simulate a spinor

system. Thorough checks are made every step of the way – from simulating

pure, uniform systems to reproducing the results of Barnett et al.’s paper.

We then perform further investigations around quenching depths, and their

long-time ramifications.



Chapter 3

Code Development

In this chapter we cover the numerical essentials behind our simulations. Though we are somewhat

spoiled with the advent of affordable and accessible computing facilities, one must always make the most

of it by developing the most efficient and accurate code possible. Here we discuss the importance of work-

ing in dimensionless variables, and the development of our Runge-Kutta algorithm for c-field methods.

Not forgetting about the real world, we move on to consider experimentally viable parameters for two-

dimensional spinor systems, and how to appropriately translate those to our simulations.

3.1 Dimensionless Formalism

In physics we work with units on a range of values orders of magnitude

apart. This is not always favorable in a computational environment as we

lose accuracy and efficiency when dealing with such a range. Hence we

work in dimensionless units: expressing our variables in terms of chosen

“natural units” for our system brings our parameters closer to unity.

In the following simulations we adopt the following natural units:

x = x̄lz t = t̄ω−1z (3.1)

lz =

√
~

mωz
(3.2)

where the barred variable is the dimensionless parameter, wz is the trap

frequency in the z direction, and lz the harmonic oscillator length in the z

direction.

It is worth noting here that the wavefunction has units of inverse length

in 2D; hence,

ψ = ψ̄l−1z (3.3)

Substituting the above into the two-dimensional spinor GPEs, we obtain

their dimensionless forms:
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i
∂ψ̄+

∂t̄
=

[
−∇̄

2

2
+ ḡ(2D)

n |Ψ̄|2 + ḡ(2D)
s (|ψ̄+|2 + |ψ̄0|2 − |ψ̄−|2)

]
ψ̄+ + ḡs

(2D)ψ̄†−ψ̄
2
0 (3.4a)

i
∂ψ̄0

∂t̄
=

[
−∇̄

2

2
+ ḡ(2D)

n |Ψ̄|2 + ḡ(2D)
s (|ψ̄+|2 + |ψ̄−|2)

]
ψ̄0 + 2ḡs

(2D)ψ̄−ψ̄
†
0ψ̄+ (3.4b)

i
∂ψ̄−
∂t̄

=

[
−∇̄

2

2
+ ḡ(2D)

n |Ψ̄|2 + ḡ(2D)
s (|ψ̄−|2 + |ψ̄0|2 − |ψ̄+|2)

]
ψ̄− + ḡs

(2D)ψ̄†+ψ̄
2
0 (3.4c)

By dimensional analysis we find the dimensionless 2D interaction param-

eters are given by

ḡ(2D) =
m

~2
g(2D) (3.5)

where g(2D) is given in Sec. 2.3.1.

From now on we will omit the bars for simplicity.

3.2 The Projected Gross-Pitaevskii

Perhaps here is an appropriate place to further discuss visualising high and

low energy “modes”. When looking at excitations, it is useful to perform

a Fourier transform and look at our system in k-space. The condensate

is conveniently located at k = 0, while the higher energy modes are at,

accordingly, higher k numbers.

When modes are macroscopically occupied, they can be simulated as

classical fields. Hence the Projected Gross-Pitaevskii equation (PGPE)

utilizes a projection operator that takes all the modes in the system and

projects it onto a low-energy, coherent subspace[32], allowing us to simulate

them using classical stochastic field equations. This subspace is defined

by a parameter – εcut – which is explicitly chosen at the start of the sim-

ulation. Below εcut are all highly-Bose degenerate modes, including the

condensate. We assume that the coupling to the incoherent region (of high-

energy, sparsely occupied modes) is weak enough to be ignored.

Figure 3.1: Projection oper-

ator in k-space. Note that

there is a dark red spike at
k = 0 in the m = 0 states,

but it’s hard to see.

Recall from Sec. 2.2.1 how we expanded our system in terms of plane
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waves due to the periodic boundary conditions of our system:

ψ̂m =
1√
L2

∑
k

âk,me
ik·r m = +1, 0,−1 (3.6)

Formally, the projection operator is defined as:

P̂{f(x)} =
∑
|k|<kcut

ϕk(x)

∫
d2x′ϕ∗k(x′)F (x′) (3.7)

where f(x) is simply a spatially dependent function and ϕ are the single

particle momentum states ϕk = 1
Le

ik·x, and kcut is the momentum-space

cutoff corresponding to εcut.

In implementing this projector, we take the Fourier transform the spatial

wavefunction into k-space, and then simply zero out all modes with |k| >
kcut (see Fig. 3.1). Now, in lieu of the rather complicated process in Eq.

3.7, we have

P̂{ψm(x)} = F−1(P̂k{F(ψm(x))}) m = +1, 0,−1 (3.8)

where

P̂k =

1 if |k| ≤ kcut
0 if |k| > kcut

(3.9)

We should also mention here that the PGPE decribes a microcanoni-

cal system; i.e., equilibrium is determined by the macroscopic quantities

(energy, number and magnetization). Hence, those values are conserved

quantities in our system.

3.3 Developing the VRKF45 Function

A significant proportion of this year’s work was spent developing an effi-

cient and accurate integration algorithm from scratch, in an attempt to

gain a better grounding in numerical methods. To simulate a spinor con-

densate we must develop an algorithm to solve three coupled GPEs, given

in their preprepared dimensionless forms in Eq. 3.4.

The Algorithm

The Runge-Kutta algorithm is a fourth order iteration of the general

Euler method for advancing a solution from xn to x+ h ≡ xn+1:

yn+1 = yn + hf(xn, yn) (3.10)

This gives a step error on the order of O(h2), where h is the step size and

f(xn, yn) is the derivative dy/dx. That’s alright, but we can do better. x x + h

Figure 3.2: The fourth-order
Runge-Kutta algorithm
for propagating a function
forward by step h. Derivative

evaluations are given by
purple dots; the final answer
by a green dot.

Let’s consider the next level: what if we were to evaluate the derivative

at a trial step somewhere between x and x + h, then use both values to

construct the solution at x+ h? This second order method gives an error of

O(h3) – a little better.

As the reader may already guess, we can keep evaluating trial points

between x and x + h to get more and more precise solutions, but compu-

tational demand goes up linearly for each order we climb. Most stop at
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fourth order, where we evaluate the derivative (see Fig. 3.2) at x, two at

trial midpoints and another at x + h. We now get a solution with error

term O(h5)1. 1 Iit is here we must remind

ourselves that high order

does not equate to high accu-
racy — they may correlate,

but one does not necessary

lead to the other.

Adaptive Stepsize

Ideally what we want is an algorithm that gives us a solution to a preset

accuracy, all while consuming the minimum amount of processing power.

We want to take care during quickly-changing terrain, while flying past

boring plains. To achieve this, we need an idea of how well we’re doing;

an estimate of the truncation error. Thus we evaluate the fourth and fifth

order solutions for our problem. The fifth-order solution acts as a perfor-

mance monitor, and its difference between the fourth one is what gives our

truncated error. A big error means we need not be too hasty, while a small

error allows us to take larger strides.

set initial step size

compute 6 derivatives 
between t and t+step

4th order 
solution

5th order 
solution

allowed 
error

relative 
difference

update time
update solution

shorten
time step

lengthen
time step

stop

PROJECTED 
SPINOR GPEs

Cash-Karp 
parameters

algorithm 
runtime

current 
wavefunction

tolerance

propagation 
picture

max error of 
solution

START:

error bad

error ok

time left

no time left

return new 
wavefunction

go back to 
START

go back to 
START

Figure 3.3: Overview of the

Runge-Kutta algorithm used
in this work. Diagram shows

the relationship between the

executable program (purple
box, left) and the VRKF45
function file (purple box,
right).

One may rightly ask at this point: what’s stopping us from just using

the fifth-order solution instead? Alas, we can’t have any pudding if we

don’t eat our meat, and without a higher order solution to compute a

truncation error, we cannot implement an adaptive stepsize.

Formally, the midpoint evaluations are given by[33]:

K1 = hf(xn, yn)

K2 = hf(xn +
h

4
, yn +

1

4
K1)

K3 = hf(xn +
3

8
h, yn +

3

32
K1 +

9

32
K2)

K4 = hf(xn +
12

13
h, yn +

1932

2197
K1 −

7200

2197
K2 +

7296

2197
K3)

K5 = hf(xn + h, yn +
439

216
K1 − 8K2 +

3680

513
K3 −

845

4104
K4)

K6 = hf(xn +
h

2
, yn −

8

27
K1 + 2K2 −

3544

2565
K3 +

1859

4104
K4 −

11

40
K5)

(3.11)
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From these, we obtain the fourth-order,

y
(4)
n+1 = yn +

25

216
K1 +

1408

2565
K3 +

2197

4104
K4 −

1

5
K5 (3.12)

and fifth order solutions:

y
(5)
n+1 = yn +

16

135
K1 +

6656

12825
K3 +

28561

56430
K4 −

9

50
K5 +

2

55
K6 (3.13)

This algorithm is called the Runge-Kutta-Fehlberg, and will be the one

we use.

It is here we wish to stress to the reader: our spinor system is more

complex, with three individual, but coupled, components. The above values

are not simply scalar — yn, for example, is an N × N × 3 element vector

representing the spinor. Ki is also an N×N×3 element vector, representing

the derivatives in the spinor GPEs. xn, which we use as time, is a scalar.

Cash-Karp Parameters

All of the crazy coefficients you see in the above equations are the

Fehlberg coefficients. Though satisfactory, there exists a more efficient

method that performs better for differential equations with avidly fluc-

tuating right-hand-sides[34]: the Cash-Karp parameters. ai gives the

coefficients in front of h, the timestep in Eq. (3.11), while bij gives the

coefficients in front of the Ki values. c
(4)
i and c

(5)
i give the coefficients to

construct the fourth and fifth order solutions, repsectively (see Eq. 3.12,

3.13).

ai bij c
(4)
i c

(5)
i

0
1
5
3
10
3
5

1
7
8

0 0 0 0 0
1
5 0 0 0 0
3
40

9
40 0 0 0

3
10 − 9

10
6
5 0 0

− 11
54

5
2 − 70

27
35
27 0

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378

0
250
621
125
594

0
512
1771

2825
27648

0
18575
48384
13525
55296
277

14336
4
4

Table 3.1: The Cash-Karp
parameters for constructing

the time step (a), derivatives
(b), and the fourth/fifth order
solutions (c).

In recalculating our stepsize inside the algorithm, we use the following

relation[35]:

hnew =

S × hcurrent × |Emax
TE |

0.20 if Emax ≥ TE

S × hcurrent × |Emax
TE |

0.25 if Emax < TE
(3.14)

where S is a safety factor, around about ∼ 92%. As stated before, the

truncation error (TE) is given by the maximum difference between the fifth

and fourth order solutions:

TE = max(|y(4)n+1 − y
(5)
n+1|) (3.15)

and the allowed error, Emax, is defined as

Emax = tolerance×max(y
(5)
n+1) (3.16)

where we harness a preset tolerance (usually on the order of 10−6, 10−8).

These are the parameters we’ll be using in our algorithm; Fig. 3.3 gives a

graphical overview of the whole shebang.
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Initial testing against matlab’s ode45

In writing this new algorithm, we want to make sure that it is at least as

good as matlab’s bundled ode45. Though good for simple systems, mat-

lab’s ode45 function fails to propagate the GPEs accurately, mainly due

to how it calculates error. Nevertheless, it provides us with a good start-

ing ground to compare our baby code. Using the same tolerance settings

for both algorithms, we study their performance with a simple harmonic

oscillator model:

m
d2x

dt2
= −kx

This has the exact solution

x(t) = A cos(ωt+ θ)

Plotting the ode45 and VRKF45 solutions:

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1
ODE45 vs. VRKF45 Figure 3.4: ODE45 (line) and

VRKF45 (crosses) solutions

for the simple harmonic
oscillator.

Fig. 3.4 shows good agreement, but let’s see exactly how well they’re

doing. Pitting the two against one another, we find that VRKF45 does well

at a tolerance setting of 10−8:

0 2 4 6 8
−1

−0.5

0

0.5

1
ODE45 solution

0 2 4 6 8
−1

−0.5

0

0.5

1
VRKF45 solution

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1
x 10

−6 Absolute error comparison

 

 

ode45
vrkf45

Figure 3.5: Absolute error
comparison between ODE45

and VRKF45 solutions for a
tolerance of 10−8.

And even better at higher tolerances (this one is at 10−10):

However, if we lower the tolerance to 10−6, VRKF45 starts failing:
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Figure 3.6: Absolute error
comparison between ODE45

and VRKF45 solutions for a

tolerance of 10−10.
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Figure 3.7: Absolute error

comparison between ODE45
and VRKF45 solutions for a
tolerance of 10−6.

VRKF45 seems to be doing better, faster than ODE45 at high toler-

ances; and yet it does worse quicker as the tolerance is lowered. Our sus-

picion is that there’s something off with the error calculations — perhaps

they are more sensitive than they should be to tolerance settings. What

we do know is that ode45 measures error differently, and how it does so

is not completely documented. This is perhaps the reason ode45 fails to

propagate the GPEs — it might be, for example, sensitive to phase errors.

Due to these results, we’ll now exclusively work with a tolerance of 10−8

or higher.

3.3.1 Interaction Picture

In computing the derivatives for the VRKF45, we take our spinor GPEs

into the interaction picture. This is useful, mostly because H0is relatively

easy to solve, so we jam all of our time dependence onto our operators and

let them evolve freely. Currently, the GPEs are in the form:

i
∂ψm
∂t

= (Ĥ0 + Ĥintm)ψm (3.17)
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where Ĥ0 = k2/2 is the free (dimensionless) Hamiltonian, and Ĥintm the

interaction Hamiltonians:

Hint+ =
(
p+ q + gn|Ψ|2 + gs(|ψ+|2 + |ψ0|2 − |ψ−|2)

)
ψ+ + gsψ

†
−ψ

2
0 (3.18a)

Hint0 =
(
gn|Ψ|2 + gs(|ψ+|2 + |ψ−|2)

)
ψ0 + 2gsψ−ψ

†
0ψ+ (3.18b)

Hint− =
(
−p+ q + gn|Ψ|2 + gs(|ψ−|2 + |ψ0|2 − |ψ+|2)

)
ψ− + gsψ

†
+ψ

2
0

(3.18c)

In the interaction picture, we transform the Schrödinger picture spinor

(ψm) according to:

ψ(I)
m = eiH0

t
~ψm (3.19)

for which the GPEs transform to: The superscript (I)s denote

the interaction picture
version of the quantity.

i
∂ψ

(I)
m

∂t
= Ĥ(I)

intm
ψ(I)
m

= eiH0tĤintmψ(I)
m

= eiH0tĤintme−iH0tψm

(3.20)

Thus, in the interaction picture the field evolves only under the influence

of Hint
i
∂ψm
∂t

= P̂{eiH0tĤintmP̂{e−iH0tψm}} (3.21)

By exactly exponentiating H0, we hope that solving the GPEs may be

more efficient.

3.3.2 Noise Considerations

When passing through a symmetry-breaking phase transitions, it is the

quantum fluctuations that determine the following dynamics of the conden-

sate. To seed these fluctuations, we add noise to our initial state.

Previous work by Saito et al. investigated the effects of different noise

profiles in a numerical reproduction of the Berkeley experiment[29]. In

a study of no noise, white noise and colored noise, white noise produced

results most like those of the Berkeley experiment. Hence it is white noise –

i.e., random numbers obeying a normal distribution – that we will employ.

Adding noise is tricky business. To make sure we are adding in the right

amount of noise, we utilize the truncated Wigner formalism.

The Truncated Wigner Representation

One may recall that our field operator Ψ̂ fulfills the following commuta-

tion relation:

[Ψ(r),Ψ†(r)] = Ψ(r)Ψ†(r)−Ψ†(r)Ψ(r) = δ(0) =∞ (3.22)

Physically this infinity corresponds to vacuum fluctuations for the infinite

number of excitation modes in a continuous system. Thankfully, this infin-

ity is avoided through discretizing our system for numerical methods.

In the truncated Wigner representation, the mean atomic density of our

condensate is expressed as follows[36]:

〈Ψ̂†Ψ̂〉 = 〈Ψ∗Ψ〉w −
1

2
〈[Ψ̂, Ψ̂†]〉 (3.23)
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where 〈Ψ∗Ψ〉w is an average over the Wigner function; i.e., the semiclassi-

cal trajectories we simulate within the GPE. In a general sense, the Wigner

function is a probability density in phase space2, just like the wavefunction 2 A probability density

representation in phase space

is super useful for those
looking at coherent systems

such as BECs. Vacuum

modes are simply Gaussians
centered around the origin,

and a coherent state is simply

the vacuum state translated
somewhere else. It is also

useful for seeing phenomena

such as quantum squeezing;
a direct manifestation of

Heisenberg’s Uncertainty
Principle.

is in real space. However, the Wigner function is allowed negative values,

making it a quasi -distribution function3.

3 Don’t worry — this is
not so paradoxical as one

might think. Regions of neg-
ative probability cannot be
larger than a few ~, and are
shielded from measurements

by the uncertainty principle.

Note well that the 1
2 term in Eq. (3.23) is not a part of the condensate

density, but corresponds to the vacuum fluctuations as shown in Eq. (3.22).

Thus the condensate field needs to have noise added to the real density

to mimic these vacuum fluctuations. We need to add, on average, half an

atom to each mode.

In implementing this, we have

Ψ =
√
n0

0

1

0

+ Ψ̃ (3.24)

where Ψ̃ is our noise term, given for each excitation mode:

Ψ̃ =


∑
k wk

1
Le

ikx∑
k wk

1
Le

ikx∑
k wk

1
Le

ikx

 (3.25)

To construct this, we make sure that the complex noise amplitudes wk

satisfy |wk|2 = 1/2. This noise can be equivalently added in position space

as:

Ψ̃ =
1

2l

R+ iR
R+ iR
R+ iR

 (3.26)

Here, l is the lattice constant of our grid in real space, and R is the ran-

dom number function that produces our white noise (Gaussian envelope,

normalized to unity with a variance of 1). Note that each R in Eq. (3.26)

are separate calls to the random-number function.

3.4 System Parameters

In this thesis we will investigate spinor dynamics in an F = 1, 87Rb gas

with mass and scattering lengths[37, 38]:

m = 86.909u = 1.4432× 10−25kg

a0 = 101.8aB = 5.4505× 10−9m

a2 = 100.4aB = 5.3129× 10−9m

where u is the atomic mass and aB is the Bohr radius.

3.4.1 Experimental Values and Grid Size

In purely numerical studies one must be careful that the parameters we use

to simulate our system are realistically viable. In our code we implement

the dimensionless aliases of parameters used in the Berkeley quenching

experiments on quasi-2D spinor BECs.
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Following the Berkeley experiments[39], we simulate quasi-2D conden-

sates with an axial trapping frequency of 2π × 440 Hz, giving us a spin

healing length of ξs = 2.5µm. We then discretize the system on a grid

with lattice constant l � ξs and n0l
2 � 1, all while the total grid size

L � ξs. This is done to guarantee a large enough condensate to resolve

spin textures, and yet small enough to lessen the computational demand.

In initializing this grid we chose a condensate size of L = 50 = 25.7µm

with looped boundary conditions to simulate an essentially infinite 2D

plane. An energy cutoff of εcut = 5~ωz was chosen to give a lattice constant

of l = 0.25202µm. Other used parameters are included in the table below.

Parameter Value

n0 800

L/lz 50

εcut/~ωz 5

ωz/2π 440

l/lz 0.4902

ξn/lz 0.7022

ξs/lz 7.591

g
(2D)
n (~2/m) 0.0369

g
(2D)
s (~2/m) -0.000316

Table 3.2: Realistic param-

eters used for simulations.

Note that these are all for a
87Rb gas, and all parameters

are given in the dimensionless

forms. The smaller system
was used for various code

checks and witnessing spin-

oscillations, while the larger
system was used to see spon-

taneous magnetization. For
our quenching runs we used
the medium-sized system.



Chapter 4

Simulations

Here we observe the fruits of our labor, and use our newly developed code to simulate the spinor

system. First, though, our code is run through some basic tests: does it conserve the constants of motion?

Does its phase evolve as expected? We then attempt to reproduce previous work showing spontaneous

magnetization and prethermalization. Moving onto more flavoursome territories, we investigate quenches

at different depths, and its effect on domain formation. Results are discussed as they are presented.

4.1 The Uniform Spinor Condensate

As an initial exercise we evolve a uniform condensate using our developed

code. We check that conservation laws are satisfied, as well as checking

that the phase evolution and spin oscillations behave as expected.

The uniform condensate is also a good case to keep coming back to

when one is debugging code for more complex situations later on.

4.1.1 Constants of Motion

Formally[40], the energy, number and overall magnetization (Fz) of a spinor

BEC are conserved as it evolves. These quantities, defined as

E =
∑
all
x,y

(
~2

2m
|∇Ψ|2 + Vext(r)|Ψ|2 +

1

2
gn|Ψ|4 +

1

2
gs|Ψ∗FΨ|2

)
∆x∆y (4.1)

These come from the con-

tinuous expressions given
by Yan and Ma (2012), and

have been discretized for
numerical calculation. Note
that

∑
x,y ∆x∆y '

∫
dr

N =
∑
all
x,y

(
|ψ+|2 + |ψ0|2 + |ψ−|2

)
∆x∆y (4.2)

M =
∑
all
x,y

(Fz) ∆x∆y =
∑
all
x,y

(
|ψ+|2 − |ψ−|2

)
∆x∆y (4.3)

where Ψ = (ψ+, ψ0, ψ−)T, the full spinor wavefunction, and Fz the trans-

verse magnetization.

Evolving a uniform, polar (i.e., Ψ = (0, 1, 0)T) condensate for the

timescales we’ll be looking at in our other simulations (∼ 30 ms), we com-

pute the relative errors of E, N and M , and observe good conservation up

until the order of 10−12. We present some examples as follows:
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−6 Conservation Test − Uniform Condensate − Interaction Picture

 

 

Figure 4.1: Relative deviation
of the constants of motion

from their initial values. ∆ =

(current)/(initial) − 1. Blue
corresponds to magnetization,

red to number, and green to
energy.

In our simulations, we add noise to mimic quantum and thermal fluctu-

ations in the system. As expected, this makes the conservation of energy a

little worse:

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1
x 10

−6 Conservation Test − Noise at 10−4 − Interaction Picture
Figure 4.2: Relative deviation

of the constants of motion,
simulated with noise. Colors

as in Fig. 4.1.

Note here that in Fig. 4.2 the condensate is evolved with the normal

spinor GPEs. Using the PGPEs, we project out the higher-k modes created

by the noise, and thus expect to see the constants of motion behaving a

little better:

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1
x 10

−6 Conservation Test − Noise at 10−4 − Projected Interaction Picture
Figure 4.3: Relative deviation

of the constants of motion
with noise; simulated with
the projected GPEs. Colors

as in Fig. 4.1.

4.1.2 Phase Evolution

The phase evolution of a uniform spinor condensate can be quickly ob-

tained with the spinor GPEs. For example, a uniform condensate entirely

in the m = +1 component behaves as follows: Because everything is in
m = +1, n = |ψ+|2

i~
∂ψ+

∂t
= − ~2

2m
∇2ψ+ + gn|ψ+|2ψ+ + gs(|ψ+|2)ψ+ (4.4)

with other component equations trivially zero. For a normalized, uni-

form condensate, we find that

∂ψ+

∂t
= − i

~
(gn + gs)nψ+

= − iµ
~
ψ+ where µ = (gn + gs)n

∴ ψ+ =
√
ne−i

µ
~ t (4.5)

and thus the condensate evolves with a phase growing linearly in time

φ = (gn + gs)n
t

~
(4.6)



the uniform spinor condensate 29

Figure 4.4 shows the evolution of Re(ψ+) with the parameters gn = 0.1,

and gs = −0.01. By our calculations above we’ve plotted the expected

evolution and the numerical one.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0
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1
Phase Evolution of Uniform m=+1 Spinor Condensate

Dimensionless time

 

 

Im(ψ)Re(ψ)

O  Analytical
x   VRKF45 

Figure 4.4: Comparison of

the analytical (circles) and

numerical (blue and red
crosses) solutions for the

phase evolution of a single

component. Blue crosses plot
the real component, red plots

the imaginary component of
phase φ.

4.1.3 Spin Oscillations

To see spin oscillations, we simulate a spinor system with a box length of

L ≈ 1µm < ξs, and a spatially uniform initial state of

Ψ =

0.05

0.9

0.05


The imperfect initial polar state is there to trigger the spin-exchange

dynamics; empty m = ±1 components lead to no spin-exchanges within

the GPEs; hence some seed is needed to initial the spin-mixing dynamics.

Experimentally, due to quantum and thermal fluctuations, experiments

observe spin oscillations even when the m = ±1 states are zero. The

spin oscillations are due to the ψ†+ψ
†
−ψ

2
0 term in our Hamiltonian, which

transfers m = 0 spinors to m = ±1 components.
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Figure 4.5: Spin oscillations
of the m = 0 population

at various q. (Left) focuses
on the interaction regime,
whereas (right) focuses on the

damped oscillations in the

Zeeman regime.

Fig. 4.5 reproduces the experimentally known phenomena of coherent

spin-mixing between the polar m = 0 component and the m = ±1 compo-

nents. If one will recall Sec. 2.3.2, inside the broken-axis phase there are

two distinct spin-mixing regimes: the interaction (q < |gs|n) and Zeeman

(q > |gs|n) parts. Kronjäger et al.[25] studied these spin oscillations, and

found a “spin-mixing resonance” at q = 1|gs|n, sucessfully reproduced by

our code here.
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4.2 Reproducing Prethermalization

Now that we have some confidence in our code, it’s time to put it to the

test: can it reproduce the results of Barnett et al.’s 2011 paper?

Here we use the simulation parameters given in Sec. ?? to generate

our grids for simulating the full spinor system. Each m component of our

spinor (which, here, is a 3D matrix) contains on the order of 100 elements,

so when we propagate our system in time, we’re actually solving ∼ 1003

coupled GPEs each iteration! Depending on how long we’re propagating

the system in realtime (usual around 25 to 100ms), a single run can take

anything from half an hour two a week. The computational time is depen-

dent on how simple (uniform) and large or system is, primarily. A lower

energy cutoff in the projection operator can also help with improving com-

puting times.

4.2.1 Spontaneous Magnetization

As we have learned before (Sec. 2.2.2), when we take a polar state into

the interaction regime (q < 2|gs|n), it becomes unstable and falls into

the lower-energy, m = ±1 states. An observer looking at the transverse

and longitudinal magnetization would see the system spontaneously form

magnetized domains.

Let’s see if our code can reproduce this effect. To first qualitatively see

this, we simply start with a polar state with a low amount of noise to seed

population-exchange interactions: Ψ = [0, 1, 0]T + 10−8(R + iR), and

interaction parameters gn = 1; gs = −0.01. Remember, we’re dipping our

toes in at this point. We’re not worried about exact values, we just need

to see if our code can give us something resembling a physical phenomena.

Snapshots of transverse magnetizations Fx and Fy are shown in Fig. 4.7

(Printed on the following page).

Fig. 4.7 is very promising indeed — in this simulation, we see an expo-

nential growth in transverse magnetization. Now let’s get specific: time to

implement the dimensionless versions of parameters from a real experiment,

as given in Sec. 3.4:
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FIG. 4.8: Short-time dynamics

FIG. 4.9: “Coarsening”

Figure 4.6: Exponential
growth of transverse mag-

netization. Dots indicate

snapshots of Fx and Fy

printed in this thesis: blue

represents short-time dy-
namics of domain formation,
while gold shows the conden-

sate undergoing ‘coarsening’
— a topological phenomena

that points to the condensate

being in a prethermalized
regime.

Fig. 4.6 shows the exponential growth of transverse magnetization, and

when the snapshots in Fig.s 4.8 and 4.9 are taken. Fitting an exponential

to this curve, we find that the time constant is ≈ 9ms.

We also notice that these spin domains seem to all have a characteristic

domain width (which from now on we will denote d). A visual estimate of

this domain size from Fig. 4.8 gives us a width of ≈ 7lz ≈ 7µm.

4.2.2 Coarsening and Long-time Dynamics

Curiously, we’ve already started see prethermalization effects in our pre-

liminary simulations. Fig 4.9 shows the well-formed domains grow and rip

apart — the condensate no longer has a characteristic domain size, and we

now see domains at a range of widths.
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Figure 4.7: Qualitative
run, observing spontaneous
magnetization of a polar

state at p = 0, q = 0 in
the transverse directions, Fx

(left), and Fy (right). x and y

axes are real space positions
with units lz . Snapshots

taken at t = 0, 8.3, 8.7, 9.1,

9.5ms.
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Figure 4.8: Spontaneous

magnetization of a polar
state, with experimental
parameters as given in Sec.

3.4. Snapshots taken at times
given by Fig. 4.6; i.e., t = 0,
3, 5, 7, and 9ms.
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Figure 4.9: Observation
of ‘coarsening’ in long-

time dynamics. Here the

condensate reaches the
prethermalized regime, where

domains grow and evolve

randomly with no clear
characteristic domain width.

Parameters and axes as in
the previous figure; snapshots

taken at 11, 14, 22, and

29ms.
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4.3 Quench Dynamics

Here’s where the fun starts. Barnett et al. only reported quenches to q = 0.

In this section we investigate the effect of different quench depths — i.e.,

the different final quadratic Zeeman parameters in the range q = 0 →
2|gs|n, where the initial polar phase is unstable (c.f. Fig. 2.6). We look at

the effect on domain formation – the average size of the formed domains,

how long it takes to form, and how strongly magnetized they are.

Recall from Sec. 2.3.3 when we introduced correlation functions. Here

we construct the spatial correlation function for our condensate at each

iteration of our code and from it define an average domain size for the con-

densate. Equation 2.40 gives us an average of how strongly correlated any

point in our condensate is to any other point distance r away, and hence a

way to explicitly define an average domain size for the condensate. It also

allows us to look at how ordered the magnetization of our condensate is at

any point in time.

We start with an initial polar state with vacuum noise:

Ψ =

ψ+

ψ0

ψ−


where

ψi(r) =
√
nδi0 +

RRe + iRIm
2l

i = +1, 0,−1 (4.7)

Here, R are random numbers of order unity obeying a Gaussian distribu-

tion of mean zero and variance 1. Plotting this, we see it’s reminiscent of a

2D sinc function with background noise:

−30
−20

−10
0

10
20

30

−40

−20

0

20

40
−5

0

5

10

15

x 10
6

Correlation Function Figure 4.10: The 2D cor-
relation function for the

initial state, where the axes
represent x and y separation.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−2

0

2

4

6

8

10

12

14
x 10

6 Correlation Function −− x slice

C
or

re
la

tio
n

r

Figure 4.11: A slice through

the correlation function taken

at x = 73, the midpoint of
the grid. Note the sinc-like

behaviour.

Because the correlation function displays behaviour much like the sinc

function (as seen in Fig. 4.11), we will define the average domain size to

be the width of the main peak of the function at r = 0. We take measure-

ments through both the x and y planes and average them out to find the

average domain size of the condensate at that time.

It is important to note here that domain size and the magnetization of

the domains do not always correspond to each other. Hence we also keep
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Figure 4.12: Schematic
diagram of how the width

and peak is measured in our

quenching studies. The width
is measured from the center

out to the first zero crossing
in both directions. We repeat

this for a slice in the y axis,

and average the two out.
Peak value is measured to

be the correlation value at

r = 0, and the mean is simply
the sum of all values of the

correlation function, averaged

over all grid points.

track of correlation strength — i.e., a measure of how magnetized these

domains are. We do this by taking the peak and mean value of the 2D

correlation function.

We should remind ourselves what these values actually mean, and re-

member that we’ve removed all spatial dependence in them. The peak

correlation, taken at G(0), is a measure of how strongly magnetized each

individual grid point is, while the mean correlation tells us how magnetized

the entire condensate is.

As usual, it is good practice to always keep an eye on our condensate

fraction, albeit merely for troubleshooting purposes.

4.3.1 Sampling Pass

Despite extensive investigation into the short and long time dynamics

of a quench to qf = 0, Barnett et al. did not look at any quenches to

qf 6= 0. This is actually quite a curious region, if one will recall from Sec.

2.3.3: previous theoretical work by Lamacraft detailed different quenching

regimes within 0 < qf < 2|gs|n.

To get a broad overview of what the quench dynamics look like at differ-

ent quadratic Zeeman, we perform a sampling pass of five equally spaced

points between qf = 0 and qf = 2|gs|n (see Fig. ??)
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Figure 4.13: A sample run
of five simulations quenching

to qf values of 2, 1.5, 1, 0.5,
and 0, respectively from top

to bottom. For qf = 0, the

correlation function shows
expected dynamics (c.f. Fig.

4.6). One should also recall

that in the previous section,
we found that long-time,

random coarsening dynamics

started somewhere around
∼ 10ms, which explains the

continued growth of domain
size after it first it levels out

for qf = 0.
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From data gathered in our sampling pass, we make three remarks:

1. Clipping in domain size. The right hand column of Fig. 4.13 shows the

average domain width in the condensate as defined previously. However,

this tends to ‘clip’ (i.e., max out) when the width reaches, or surpasses, the

entire length of the condensate. This happens when our system tends to

the same spin state and becomes, in general, more correlated. The entire

correlation function lifts above zero, and hence our domain width becomes

undefined. We can observe this in Fig. 4.13 principally when the mean

value of the correlation function rises above zero, meaning that the value of

overall transverse magnetization deviates.
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Figure 4.14: Lifting of the

correlation functions over
time. When the condensate

first starts forming domains,

its correlation function looks
qualitatively akin to the

sinc-like function on the
left. Afterwards, the entire

correlation function is ‘lifted’

up above zero (note the
y-axis limits on the right

subfigure).

2. Coarsening. Throughout this investigation we’ve talked about ‘coarsen-

ing’, and have roughly defined it to mean randomly growing spin textures

with no characteristic length (i.e., it is fractal in nature). During this long-

time regime, the chaotic behavior of the system renders each simulation

run-dependent1, and any thorough data analysis will involve statistics col- 1 We know this is the case as

each qf has been run at least
three to five times. However,
simulations display qualita-

tively similar properties for
similar qf .

lected from many repeated simulations. Hence we will look at the long-time

regime only qualitatively. Thankfully, the phenomenon of coarsening shows

itself quite distinctively and reliably in the correlation view:
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Figure 4.15: Snapshots
during a quench to qf = 0 of

(left) well-formed domains in
the short-time regime, and
(right) coarsening effects. The

black line on the bottom left
denotes how our definition of

average domain size from the

correlation function translates
to F+.

During the initial domain-formation phase after the quench, domains

are well-defined and all have similar sizes. Its correlation function at this

point resembles a smooth, 2D sinc function. When we define the average

width of the domains to be the distance from the original at which the
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correlation function crosses zero, this translates to the midpoint between

the two directions the spinors could be pointing to in the transverse plane

— i.e., the unpolarized spinors, denoted by the greens (and more explicity

by the black line) in Fig. 4.15.

Going into long-time dynamics, the edges of the correlation function

start flattening out, and the base of the central peak widens. In the prether-

malized, coarse regime, the correlation function displays a cone shape, signi-

fying domains in a range of sizes. Take note that this was qualitatively the

exact same behavior as observed by Barnett et al.

3. Peak and mean behavior. Though clearly related, the peak and mean

values of our correlation function displays somewhat disparate behavior

(see Fig. 4.13). The peak value stays small at shallow quenches, eventually

getting larger and more ordered at deeper quenches. Peak correlation val-

ues also tend to flatten out and displays less oscillatory behavior at deeper

quenches (this is what we expect to see – c.f. Fig. 2.16). The mean value,

however, lifts above zero between qf = 0 and qf = 2|gs|n.

Curious. We may have set sail looking for quench depth effects on do-

main size, but we happened upon a funny new island. This just begs for

further investigation, so we’ll consider this more in-depth in the next sec-

tion.

4.3.2 Effect of Varied Quench Depth

Doing one better than our initial sample pass, we run our simulations for

twenty equally spaced quench depths between qf = 0 and qf = 2|gs|n. Each

run is propagated for ∼ 25ms (6000 iterations), at least2. 2 Note that a single run at a

specified quench depth takes
just over an hour to finish;
hence five runs of the same

simulation will take 5-6 hours.
Patience is key!
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Figure 4.16: Peak values for
the 2D correlation function at
varied quench depths in time.

On the peak correlation value

Fig. 4.16 shows good agreement with previous quenching studies by

Barnett et al. in the deep quench limit (qf = 0). We see an exponential

rise in magnetized domains, which then plateaus out to a quasi-steady,

prethermalized regime. This happens similarly for the other deep quenches

(qf < 1|gs|n), with lessening degrees of magnetization as we move to

shallower quenches. This makes sense due to the fact that we’re putting

less energy into the system at shallower quench depths.

We can look into this excess energy further, by looking at the heating of

the system, given by Barnett et al.:

Q =
1

4
Nq0(1− qf

q0
)2 (4.8)

Plotting this:
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Figure 4.17: Excess energy
after a quench.

And we observe that a deeper quench results in us putting more excess

energy into the system. This excess energy corresponds nicely with the

curves in Fig. 4.16.

Figure 4.18: Peak correlation

values for 5 equally spaced
runs between qf = 0 and
qf = 2|gs|n.

What is interesting and must be discussed is the lesser-studied regime

of shallow quenches (1|gs|n < qf < 2|gs|n), shown by the yellows, or-

anges and reds in Fig. 4.16. Here we see almost well-defined oscillations,

characteristic of correlations propagated along a light-cone. When we say

this, we mean that the propagation of correlations has a finite velocity,

cs = −(q(q − 2|gs|n))/k2c . This gives a similar situation as in general relativ-

ity, where information has a finite and constant speed limit. The oscillatory

behavior of correlations displayed in the shallow quench regime is reminis-

cent of similar investigations performed on light-cone dynamics in quantum

many-body systems (see, for example, Fig. 2 in Ref.[41], which performs a

quench in an optical lattice).

We were surprised by the regularity of these oscillations, but did not

have time to perform a more thorough, focused investigation in this area.

Here the reader may inquire into some fluctuations between the results

shown here. We want to stress that our system has many degrees of free-

dom (simulating the interaction of tens of thousands of modes) and subject

to chaotic behavior. Though single runs of each simulation may display

distinct behavior, the overall tend is reasonably clear.

Ideally, with more time and computational resources, an extension would

be to run this set of simulations for many times, and average out the re-

sults over many trajectories. With this we could also assess the typical

amount of fluctuation from the mean.
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Figure 4.19: Average domain
sizes in the condensate
at varied quench depths

in time. Note the jagged
character of these plots come
from our initial definition

of domain width. During
the simulation, the entire

correlation tends to lift for

quenches 0 < qf < 2|gs|n.
When this happens, the first
minimum of the sinc function

rises above zero, and our
calculation jumps to the next

zero-crossing.

On the average domain size

A look at the evolution of domain sizes in our system yields a very

different picture. Here, it is the shallow quenches near q0 = 2|gs|n that

spawn the largest domain sizes (albeit mostly uncorrelated), while the deep

quenches take on more modest domain sizes (and are highly ordered).

For deeper quenches we add more excess energy to the system; hence,

shorter wavelength modes can become unstable, leading to smaller domain

sizes, and respectively for shallow quenches: only long wavelengths become

unstable; hence the larger domain sizes.

From the domain size, and peak correlation data, we can conclude

that we have a ‘can’t have your cake and eat it too’ situation. If we want

stronger correlations (more order) we have to sacrifice homogeneity by

introducing more domain walls (more entropy). If we want a very smooth-

looking condensate, we can’t have them be highly correlated to each other.

Looking at the relationship between quench depth and domain size is

not so trivial. Due to the inevitability of coarsening effects that break and

grow our initially nice domains, we take all measurements of domain size

during the short-time regime – at 1680 iterations, or around 6ms. The zero-

crossing method of finding our domain sizes also has limitations: prior to

starting these simulations we did not suspect that the entire correlation

function would lift (most dramatically around qf ≈ 1|gs|n). This meant
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that sometimes the first minimum of our sinc function rises above zero,

and the algorithm would sample the second, third minima, or even just the

bounds of the grid, as the domain width. Hence the reason for the strange

discrete jumps one sees in Fig. 4.19.

Despite these jumps, we can still clearly see an overall growth in domain

sizes as we go from qf = 0 to shallower quenches:
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Figure 4.20: Snapshots of
transverse magnetization of

our condensate for various
quench depths (denoted by
the blue dots).

This lifting of the entire correlation function was somewhat problematic

and definitely unexpected. Future work would benefit from better statistics

(i.e. more trajectories for each quench depth), and a different procedure to

find the domain widths. A common way to do this is to find the first two

minima of the correlation function, going out from the center.
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Figure 4.21: Mean correlation
values for varied quench
depths in time.On the mean correlation value

Between the quench depths of qf = 0 and qf = 2|gs|n, the mean value

of the correlation function — expected to stay at zero — lifts, peaking for

values of q ≈ 1|gs|n. This also appears to be more prominent for shallow

quenches, as seen in Fig. 4.21, with some cases rising six orders of mag-

nitude above their original values. For some reason or another, the entire

condensate becomes more spatially correlated; more ordered.

What is actually happening when the mean correlation rises? We take a

look to the transverse magnetization and actual correlation function during

these times to find out. Fig. 4.22 shows what this ‘lifting’ corresponds to:

the averaged overall transverse magnetization F+ becomes nonzero, and

the condensate enters a phase of added correlation; it becomes globally

ordered.
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Figure 4.22: Transverse
magnetization of a quench to

qf = 1.2|gs|n (left) and qf =

1.3|gs|n (right) at ∼ 45ms,
and their corresponding

correlation functions, and
time evolution. Notice how

the condensate is highly

magnetized (i.e., on either
end of the color spectrum) in

general.

Figure 4.23: Initial plot of
mean correlation values for

5 equally spaced quenched
depths. Note the maximum

at qf = 1|gs|n.

This is somewhat peculiar, as one may recall from Sec. 2.3.2, spin os-

cillations reached a “spin-mixing resonance” at exactly q = 1|gs|n! Could

these two phenomena be linked in some way? We also suspect, due to this

ordering being more prevalent in the shallow quench regime, that this may

result from the light-cone propagation properties of the correlations in that

regime.

Regardless, this peculiarity is definitely a place for further study in the

future.





Chapter 5

Conclusion

It has been shown in this dissertation that quenches at differing depths holds plenty of rich,

unexplored dynamics; especially that of the shallow-quench regime.

In this thesis we developed code from scratch to successfully simulate a complex, multi-modal spinor

Bose-Einstein condensate using the fourth and fifth order Runge-Kutta-Fehlberg algorithm, modified for

a spinor system with vector order parameter. Our code was subjected to endless testing and modifying,

reaching the needed efficiency and accuracy needed to simulate a spinor system. We replicated known

properties such as coherent spin-mixing oscillations, and reproduced prethermalization results from Bar-

nett et al.’s quench to q = 0.

With this under our belt, we set forth to investigate dynamics at different quench depths in the broken-

axis phase between q = 0 and q = 2|gs|n. This was extremely computationally expensive, and required

runs at twenty different quench points, propagating out until long-time dynamics and coarsening were

observed. This payment was not without reward, however — our results show a multitude of interesting

things.

First, we learned how the system orders itself at different depths. Shallow quenches lead to large spatial

coherence, though that coherence remains almost negligible. Deep quenches saw the formation of small,

highly correlated (i.e., magnetized) domains.

During this, we also characterized the phenomenon of ‘coarsening’ through our correlation function,

and observed our condensate reach a prethermalized regime, à la Barnett et al.

Curiously, we observed a ‘lifting’ of the mean value of the correlation function. This peaked near

qf ≈ |gs|n, and waned to zero before qf = 0 and qf = 2|gs|n. This was particularly peculiar, as it

physically translates into a gradual rise of order — i.e., the system becomes more magnetized overall. We

have many suspicions about what could be causing such dynamics here — this is definitely a place to do

more research in the future.
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5.1 Future Prospects

We must stress again that this is a large, complex, multi-nodal system which is mostly unexplored. Hence,

the opportunity for future work is vast.

First, a natural follow up to the research presented in this dissertation is to simply run the same sim-

ulations again, and for many times. Due to the chaotic nature of our system, each run displays distinct

behavior. It would be helpful to have been able to obtain an average of many trajectories (and how much

they fluctuated).

Secondly, we already saw some interesting dynamics inside the shallow-quench regime. This is a good

place to begin study towards the light-cone behavior of correlation propagation, thus leading us to inves-

tigations in quantum information theory and relativistic quantum mechanics — a very exciting journey

indeed.

And finally, an investigation into the gradual, but spontaneous ordering of the entire condensate around

qf = |gs|n.
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