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Current standard models of Big Bang cosmology are based on the fundamental assumption of a homogeneous
and isotropic distribution of matter and radiation in our universe. This gives us the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. Though valid globally, the universe is clearly inhomogeneous on a local scale:
we observe concentrations of matter in some places, and complete vacuum in others. This presentation outlines a
proposed reconciliation: the embedding of a Schwarzschild vacuole inside a Friedmann universe. Junction con-
ditions are discussed and the matching is shown by satisfying the Darmois junction conditions. Additionally, we
outline the generalization to many vacuoles in an expanding universe: the ΛCDM "Swiss Cheese" Model.

The Problem of Local vs. Global Geometries

Locally, our universe appears to be well-described by the Schwarzschild
metric. Originally used to describe the gravitational field around a
singular black hole, we may also use it to describe any static, spher-
ically symmetric distribution of matter (Birkhoff’s Theorem). Ad-
ditionally, gravitationally bound systems do not take part in the
expansion of the universe — only when gravitational fields become
insignificant do particles move with the Hubble flow.

Seminal work by Einstein and Straus[1, 2] showed the existence
of a solution for a central body surrounded by a static, spherical vac-
uum region G embedded in an expanding cosmological background.
It should also be worth noting that Oppenheimer and Snyder con-
sidered the complementary matching in 1939: a time-dependent
Friedmann metric embedded in a Schwarzschild universe[3].
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Figure 1: Simple schematic of a
Schwarzschild vacuole in a Friedmann
universe.

We begin by considering a Friedmann (dust; p = 0) universe in
which there exists a single spherically symmetric concentration of
matter at r = 0, and a sphere of void around it. The FLRW metric is
given by[4]:

ds2 = dt2 − R2(t)
1− kr2 dr2 − R2(t)r2(dθ2 + sin2(θ)dϕ2) (1)

while the Schwarzschild metric is1 1 To avoid confusion we denote the
time and radial coordinates in the
FLRW metric t, r, and T, ρ in the
Schwarzschild metric.ds2 =

(
1− 2M

ρ

)
dT2 −

(
1− 2M

ρ

)−1
dρ2 − ρ2(dθ2 + sin2(θ)dϕ2) (2)

The boundary between the local and global geometries is given
by a radially constant hypersurface, Σ. To ensure smooth matching
across this boundary, we must consider which junction conditions to
satisfy.
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Junction Conditions

We consider a general 3D hypersurface, the normal of which can be
either spacelike or timelike. Analogously to junction conditions in
electromagnetism, gravitational fields also have continuity conditions
across a surface that depends on the field’s source: in the case of
general relativity, it’s the energy momentum tensor.
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n

Figure 2: "Pillbox" integration across a
hypersurface.

These conditions are derived in the same way in which we do in
electromagnetism — perform a "pillbox" integration of the Einstein
field equation. First, we introduce Gaussian normal coordinates (for
example see chapter 21 of [5]), then perform the integration

lim
ε→0

∫ +ε

−ε
Gα

βdn = 8π lim
ε→0

∫ +ε

−ε
Tα

β dn (3)

Unsurprisingly, the absence of surface layers imply continuity of
the extrinsic and intrinsic metrics. For a discontinuity to be present
in the energy-momentum at Σ, Σ must be spacelike. The general
junction conditions dictate that momentum flow inside Σ must be
contained in Σ, and that while the extrinsic curvature exhibits a delta
function ’jump’ at the surface, the intrinsic curvature must be contin-
uous across Σ.

The smooth matching of the FLRW and Schwarzschild met-
rics across Σ is guaranteed if the Darmois junction conditions are
satisfied[6]. The first fundamental form concerns the inherited intrin-
sic metric:

Υαβ = gij
dxi

duα

dxj

duβ
(4)

The second concerning the ’jump’ in the extrinsic metric: Note the indicies i = 1, 2, 3, 4 and
α = 1, 2, 3

Ωαβ = (Γp
ijnp − ∂jni)

dxi

duα

dxj

duβ
(5)

where n is the unit normal to the hypersurface.

Matching the Schwarzschild Cavity

To perform the matching, we must show that the fundamental forms
Υαβ and Ωαβ are the same in the FLRW and Schwarzschild metrics.
We first assume ΥFαβ = ΥSαβ, and show from that ΩFαβ = ΩSαβ.

Consider a hypersurface defined by a function in the FLRW metric

fF(xi) = r− r0 = 0 (6)

Since (4) is satisfied, we focus on condition (5). Since the surface is
defined in the FLRW metric, ΩFαβ was simple to find:

ΩFαβ = −1
2
|g22|−1/2∂2gαβ (7)
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The work here is in finding the components of the normal vector in
the Schwarzschild metric, nSi. Trying to get nSi as a function of xi

S
was also slightly tricky. Eventually we show that

nSi =

(
ε

dρ

du
,−ε

dT
du

, 0, 0
)

ε = ±1 (8)

and differentiating the orthogonality relation2 with respect to uα 2 This is just saying that the normal is

orthogonal to Σ, i.e., nSi
∂xi

S
∂uα = 0gives us the needed relation:

∂jnSi
∂xi

S
∂uα

∂xj
S

∂uβ
= −nSi

∂2xi
S

∂uα∂uβ
(9)

This implies that ΩFαβ = ΩSαβ = 0, ∀α 6= β. The remaining
diagonal components result in three differential equations, which can
be shown to be equivalent with a few lines of working.

We must not forget that we also need to verify that the pressure
across the boundary is continuous. However, this is trivial as the
pressure is zero in Schwarzschild spacetime, and we’ve matched it up
to a Friedmann (dust) universe.

The ΛCDM Swiss Cheese Model

Though we’ve performed a matching for a single Schwarzschild
cavity in a Friedmann universe, nothing’s stopping us from adding
more. Models with more cavities are, adorably, coined ’Swiss-cheese’
models.
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Figure 3: The ΛCDM Swiss-Cheese
Model.

Moreover, there’s also nothing stopping us from adding a cosmo-
logical constant, Λ. We know from observations that our universe
has a nonzero Λ, so it makes sense to do so. The current standard
model of Big Bang cosmology – the ΛCDM model – is a homoge-
neous, isotropic model with an FLRW metric. This can be matched
up with Schwarzschild-de Sitter, or Kottler metric, which is a sta-
tionary, spherically symmetric metric with a nonzero cosmological
constant[7].
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